VIBRATIONAL EQUATIONS OF VARIABLE MASS LAYERS
AND MEMBRANES

V. M. Smotrov and V. M. Chernyshev UDC 534.113

Vibrations of layers and membranes. consisting of variable mass particles {1, 2], are consi-
dered. Adjacent and separated particles are classified. Differential equations and natural
boundary conditions of vibrations of variable mass layers and membranes are derived. Two
examples for vibrations are integrated by means of separation of variables.

1. Adjacent and separated particles can be of four types. To the first class belong particles adjacent
and separated at each point of an elastic body surface and forming with them a single, continuous medium.
To the second class belong adjacent and isolated particles at each point of a body surface, which are con-
nected to the body, interacting with it and not among themselves. The third class consists of particles,
adjacent and separated at each point of a finite number of regular curves of finite length, belonging to an
elastic body surface. These particles interact with the elastic body, but not with each other. To the fourth
class belong particles adjacent and separated in a finite number of points of a body.

Layer and membrane vibrations are considered for a time interval, during which they remain vari-
able-mass elastic bodies of the same category as in the initial moment (mass adjacency and separation do
not affect those features of the elastic body under consideration, by which both layers and membranes are
classified).

It i{s assumed that a variable mass neutral layer does not affect its position relative to other layers.
Particles can be adjacent and separated on both sides of the layers and membranes. Adjacent and separated
particles move at the same time perpendicularly to the neutral layer and the membranes surface.

In the nondeformed state the neutral layer and membranes is a bounded region G with piecewise -
smooth boundaries L. The plane in which the region G is located is taken as the xy plane. The points in
which fourth-type particle adjacency and separation occur are inside the region G, and are denoted by M;
or Mj (xj, yi). If such a point lies on the boundary L and has an arc coordinate Si» it is denoted by Mj or
M; (sj) (i=1,2,...,k;j=k+1,...,n).

The curve at whose points there occurs third-type particle adjacency and separation, not having
common parts with other such curves and boundaries, except, perhaps, a finite or countable number of
points, is denoted by Ly, (X, ¥Ym), where xm, yp, are the coordinates of this curve (m=1, 2, ..., I). The
parts of the boundary L, at whose points third-type particle adjacency and separation occur, are denoted
by the symbol L.

We determine the intensity of reacting forces of adjacent and separated particles in their absolute
Ra and relative Ry motions, For first type particles
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_ Here p (%, y, ) =py° +pqpt +04p~+p41 * + py7~ = 0 is the density at point M (x, y) at moment t; P (X,
y) = 01is the initial density at the point M(x, g); psp¥, p17*, virt, vyy* are the density and absolute velocities
of adjacent and separated particles at point M(x, y) at moment t; and z(x, y, t) is the transverse displace-
ment of the point M(x, y) of the neutral layer at moment t, The plus and minus indices indicate adjacency
and separation, and the indices r and ! denote particle motion in the pos1t1ve and negative d1rect10ns Tre-
spectively, of the z axis, At the same time

dp,.*
plr+ (1' Y, 0) = Pu+ (x Y 0) ’ al > 0,

aplr

a"“ >0,

apl
<0, i <0

The intensity of reacting forces R, and R,y in the absolute and relative motions are related by

P
Rip = Bir + ?3’:1 ai

In this notation of reacting forces the lower indices a and r denote absolute and relative motfon, res-
pectively.

The same notation as in (1.1) is retained for particle adjacency and separation of the remaining types.
The lower indices for the corresponding quantities of second-type particles is 2, for third-type particles L,
and Ly, and for fourth-type particles Mj and M;. Partial derfvatives of fourth-type particle densities should
be replaced by ordinary ones.

For first-and second-type particles the mass density and reactive forces intensity are the mass and
force per unit area. Forthird-type particles these quantities refer to unit length, and for fourth-type
particles these mass and force are concentrated at the corresponding point. In what follows it is convenient
to consider the mass density and reactive force intensity of third- and fourth-type particles for internal
points of the region G as the masses and forces relating to unit area, and for points of the boundary L as
masses and forces relating to unit length.

Consequently, the surface density o of internal points of the region G and the linear density py of
points of the boundary L equal at time t
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i=1

X 5 (y — ¥) + 2 PL,, (Zms Yms £) 61 (% ~ T) 61 (Y — Ypm) (1.2)

m= l

PL(S, ) = o1, + 2 ou, (55, )31 (s — 53)
® j=k+41

where o, is the first-order impulse function.

Similarly one determines the reactive force intensity R Ga and Ry of absolute and relative motion of
internal points of region G and the reactive force intensity Ry, and Ry, of points of the boundary L. For
this one must replace the symbol p in (1.2) by R and add the lower index a or r. The following dependence
holds among Rg, and R, Ry gand Ry ’

dpg 9z
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The vibrational differential equations and boundary conditions are derived from the stationary
Hamilton —Ostrogradskii action principle

ty
£[6(T—U)+6A]dt=0 (1.3)

Here T is the elastic body kinetic energy, U is the potential energy of elastic forces, and §A is the
elementary work of reactive forces on possible displacements

04 =\ Roodzdzdy + $ Ruabz ds
G . L
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where t; and t; are fixed moments at which z is not varied. The region G is also not varied.

2. The kinetic and potential energies of variable mass layer are determined by the relations

Py oo dedy o (570
G
U - —;—:SD{(Az)z —2— o[ = (T ﬂ}dxdy ’

Substituting these expressions in (1.3) and performing some transformations [3], we obtain the equa-~
tion of free transverse vibrations of a variable mass layer. The equation can be represented in two forms,
the first of which is conveniently used for known reactive forces of absolute motion of adjacent and sepa-
rated particles, and the second for known reactive forces of relative motion
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Here z(x, y, t), d(x, ¥, t), E=const, 0 = const are the displacement cylinder tension, elastic modulus, and
Poisson coefficient, respectively, and A is the Laplacian.

Also obtained from (1.3) is the boundary condition

My— LYoz as — & a1, 28 a5 — 0 @.3)
i j

where My, Hy, Ny, are the bending moment, torque, and transverse force on the layer contour, determined
by the relations

My = — D[(ax2 + 6 )cos’() ‘—(a,l; T i }smze + (1 —0)—— a a sm20] (2.4)
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where

3 3 o2
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Here ¥ is a unit vector external normal to the boundary L, and ¢ is the angle between the unit vector
v and the positive direction of the abscissa axis.

For layers whose widths are identical at all points (they depend only on time) the derivative of the
cylindric tension D with respect to coordinates do not appear in the vibrational equations and boundary
conditions.

Consider an example. First type partiéles with vanishing relative velocities are adjacent to a uniform
rectangular layer, freely supported by a contour L (x=0, x= a, y =0, y=b). The layer width is identical at
all points and varies by the law h =et, and the bulk density of the material p is constant. In the initial
moment

0z

z =0 == f1 (%, ¥)s i = f; (2, §)

1=20
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It follows from the conditions of the problem that

E
pg =pe!, D= =i e, Rer=0

For the case considered,the vibrational equation (2.2) acquires the form

E

+ aeA (AZ) = 0l = m

0t’

As a result of separating variables, determining the characteristic forms [4], and solving the fre-
quency equation, we obtain

z@yJ%-XEHmAQwW+&X%MMHm Z sin L2

b
i=1 j=1

(G, =1,2,3, ... hy = anz[(‘T)’ + (—Z-)”])
Iy L, Yy, Y, are first and second kind Bessel functions. Using the well-known relation
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For sufficiently large u the functions Iy(u),. Lj(u), Yy(u), Yi(u) are of order u‘l/z, leading to the in~
equality

[ Ailo (Mg') + ByYo (M)l << Me2/ij (M = const)
‘This estimate indicates that the series obtained converges uniformly.

In the given case adjacent particles do not appear in the characteristic forms of layer vibrations,
but leads to damping of its free vibrations despite the absence of inelastic resistance forces.

3. The kinetic and potential membrane energies are determined by the relations

I MR

‘S§()()M

where T, is the membrane tension.

The vibrational equations and boundary conditions are found by substituting the kinetic and potential
energy expressions into (1.3). They are written in two forms, one corresponding to absolute motion of ad-
jacent and separated particles, and the second to relative motion. The membrane-vibrational equations are

a dz a dz a 0z
W(Pcw)-g(To'g)—w(Tow)=Rca (3.1
92 3 3 ] 3
po g = 5 (To 35) — 37 (Fogy) = Ror .2
with boundary conditions
3 ) 3
o (pL %) +To 9w = Ry (3.3)

718



d% .
oL 5 + Togy = Rur (3.4)

Consider an example. First type separated particles leave a membrane closed by a contour L (x=0,
x= a, y=0, y=h), so that

T, = const, P, = Pre =0, pir =Py = Yy 0,® (€H—1),
Vir + vy = 02/ 0t

The initial conditions are

theo=hi@ Y 2| =fi(z)

(<=0

The membrane vibrational equations are reduced to the form

0 aan 2 To
a—',-——w—aeAz 0, ot = =3

The solution is found by separation of variables

o ™
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Uniform convergence of the series obtained follows from
j Ay cos (Aye') + Byjsin (Ae )\ <<M /ij (M = const)

It follows from the solution that the characteristic vibrational forms of the system considered coin-
cide with the vibrationalforms of a constant mass membrane. The eigenfrequencies differ by a factor et.
Particle separation is manifested in the given case by membrane eigenfrequencies continuously increasing
with time.

We note the characteristics of the vibrational equations of variable mass layers and membranes which
differ from the equations of classical theory of layer and membrane vibrations. The coefficients of these
equations can be functions not only of coordinates, but also of time. In this case one must add:to external
loads reactive forces of adjacent and separated particles. These features of the vibrational equations of v
variable mass layers and membranes can lead to solutions differing from those of the vibrational equations
of constant mass layers and membranes.
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